Math 206B Lecture 18 Notes

Daniel Raban

February 20, 2019

1 Relationships of Schur Functions to Characters of $GL_N(\mathbb{C})$ and to Young Tableau

1.1 Schur functions and characters of $GL_N(\mathbb{C})$

Definition 1.1. The ring of symmetric functions of degree n is $\mathbb{C}[x_1, \ldots, x_n]^{S_n}$. The ring of symmetric functions is $\Lambda = \lim_{n \to \infty} \Lambda_n$.

Example 1.1. Λ_3 is spanned by $x_1 + x_2 + x_3$, $x_1x_2 + x_1x_3 + x_2x_3$ and $x_1x_2x_3$.

A representation is a homomorphism $\rho : V \text{ to } \operatorname{Aut}(V)$, where $V = \mathbb{C}^d$. Essentially, what we do with representations of finite groups can be done with compact groups, as well.

Theorem 1.1. All representations of $\operatorname{GL}_N(\mathbb{C})$ are rational. That is, if $M = (x_{i,j})$, then $\rho(M) = (f_{pq}(x_{i,j}))$, where the $f_{p,q}$ are rational polynomials. Moreover, $\rho(M) = (\det)^k$ times a polynomial representation.

Example 1.2. Let ρ be the determinant map sending $M \mapsto \det(M)$. This is a 1-dimensional representation. Then $\rho_k(M) = (\det(M))^k$ is also a representation for $k \in \mathbb{Z}$.

Let $\lambda = \lambda_1 \geq \cdots \geq \lambda_N$ with $\lambda \in \mathbb{N}$. If ρ is an irreducible representation of $\operatorname{GL}_N(\mathbb{C})$, then consider diagonal matrices M and "characters of ρ " given by $\operatorname{tr}(\rho[M])$. Then these is in Λ_N .

Theorem 1.2 (Weyl¹). If π is an irreducible representation of $\operatorname{GL}_N(\mathbb{C})$ corresponding to $\lambda = (\lambda_1 \geq \cdots \geq \lambda_N)$, then $\operatorname{tr}(\pi) = s_{\lambda}$, where $s_{\lambda} = a_{\lambda+\rho}/a_{\rho}$ is a Schur function.

Here, if $\alpha = (\alpha_1, \ldots, \alpha_n)$, then $a_{\alpha} = \det(x_i^{\alpha_j})_{i,j=1,\ldots,N}$ is like a Vandemonde determinant, and $\rho = (N - 1, N - 2, \ldots, 0)$ (so a_{ρ} is a Vandermonde determinant).

Example 1.3. Let N = 2 and $\lambda = (4, 3)$. Then

$$\underline{s_{\lambda} = \frac{\det \begin{bmatrix} x^4 & y^4 \\ x^3 & y^3 \end{bmatrix}}{x - y} = \frac{x^4 y^3 - y^4 x^3}{x - y} = x^3 y^3.$$

¹Igor does not remember whose theorem this is, so Weyl is a guess.

Remark 1.1. The situation in the theorem is actually something that happens for all compact groups.

1.2 Formula for Schur functions in terms of Young tableau

Theorem 1.3. Let $\lambda = (\lambda_1 \ge \cdots \ge \lambda_N)$. Then

$$s_{\lambda} = \sum_{A \in \text{SSYT}(\lambda, \leq N)} x_1^{m_1(A)} \cdots x_N^{m_N(A)},$$

where $m_i(A)$ is the number of is in A.

Lemma 1.1. This sum is a symmetric polynomial of degree N.

Proof. We show that the sum is invariant under the transposition $(i \ i + 1) \in S_N$ for all $i = 1, \ldots, N - 1$. Given a semistandard Young tableau, look at each row. If we look at rows with i and i + 1, look at parts where we do not have i + 1 squares directly below i squares. Then we can switch the number of is and (i + 1)s in this part of each row and still get a semistandard Young tableau.

Proof. We can prove the theorem by showing that a_{ρ} times the sum is $a_{\lambda+\rho}$.

$$\prod_{1 \le i < j \le N} (x_i - x_j) = \sum_{\sigma \in S_N} \operatorname{sign}(\sigma) s^0_{\sigma(1)} x - \sigma(2)^1 \cdots x^{N-1}_{\sigma(N)}$$

Here is Gessel's proof of this fact. It is easier to consider $\prod_{i < j} (1 - x_j/x_i)$.